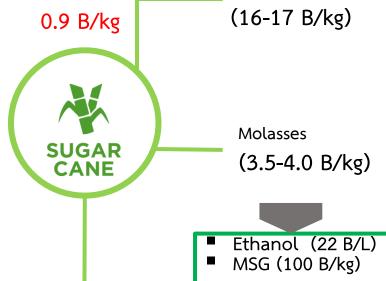
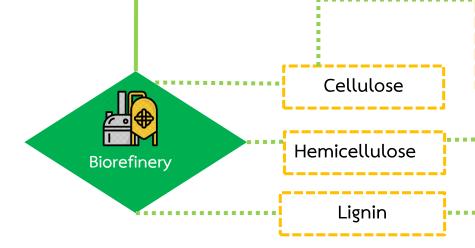


EECi: Innovation Infra Supporting S-Curve Industries

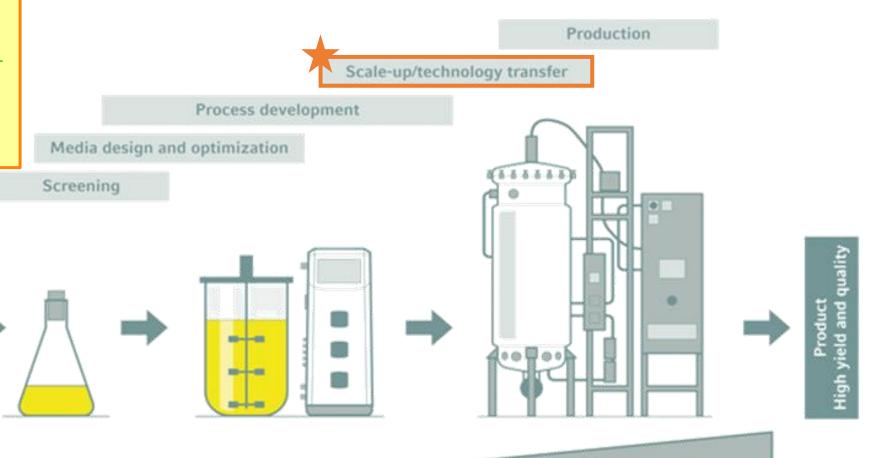

Sugar (16-17 B/kg) 0.9 B/kg Molasses SUGAR CANE (3.5-4.0 B/kg) Ethanol (22 B/L) MSG (100 B/kg) Bagasse (lignocellulose) (0.6-1.0 B/Kg)


EECi and Biorefinery Industry

Carbon fiber

Bagasse (lignocellulose) (0.6-1.0 B/Kg)

Product	Price (Baht/Kg)
Cellulose	50-95
Cellulose acetate	300-600
Carboxymethyl cellulose (CMC)	300-700
Hydroxypropyl cellulose (HPC)	600-1,000
Hydroxypropyl methylcellulose (HPMC)	100-300
Microcrystalline cellulose (MCC)	300-1,000
Nanocellulose (CNF and CNC)	54,000-500,000
Xylooligosaccharide	1,300
Furfuryl alcohol	1,700-2,600
Polyphenol	50,000-70,000


2,000-3,000

Status of scale-up biorefinery facility in Thailand

- 10 biorefinery pilot plants
- Most are not operating in GMP appliance
- The largest fermenter size is 3,000 L with no subsequent downstream processes

EECi and Biorefinery Industry

Working volume

Biorefinery Pilot Plant

STI Development and Technology Localization for Creating New Bio-based Industries

Biomass

(1st & 2nd generation feedstock)

Technology

Product

Agro-industrial side streams:

Bagasse, cassava pulp, glycerol, rice bran, empty fruit bunch, stillage, protein waste

Agronomic by-products:

Sugarcane trash, cassava stem, rice straw, coconut shell, corn stover & cobs

- Biomass pretreatment
- Opstream fermentation Process
- **O** Green chemistry
- Downstream process (Extraction, recovery, purification, etc.)

Nutraceuticals

Food Ingredients

Bioflavours

Functional Oligosaccharides

Industrial Enzymes

Oleochemicals

Biosolvents

Fatty Acid Esters

Biosurfactants

Functionalized Biopolymers

Bioplastics

Fine and Bulk Chemicals

Biofuels

Comparison of Scale-up Approaches

Scale-up on your own self

High capital investment on the pilot plant

Scale-up with Biorefinery Facility @EECi

✓ No burden on the pilot plant investment

Time-consuming

(especially pilot plant construction)

Learning and developing upscaling on your own

✓ Can start promptly!

✓ Upscaling with experts

The Biorefinery Facility @EECi will be completed by mid-June 2025 (B.E. 2568).